Efficient Delivery of Recombinant Human Bone Morphogenetic Protein (Rhbmp-2) With Cockle Shell Derived Calcium Carbonate Nanoparticles (CaCO3NPs)

Ataa T. Ghazi

Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq

Hayder F. Saloom

P.O.P. Department, College of Dentistry, Mustansiriya University, Baghdad, Iraq

Rana I. Mahmood

Dep. of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq

DOI: https://doi.org/10.25130/tjds.11.2.8

Keywords: Orthodontics, CaCO3NPs, rhBMP-2, drug delivery, fibroblast.


Abstract

Bone morphogenetic protein-2 (BMP-2) has a significant function in the formation of cartilage and bones. Notably, dosing of only BMP-2 protein intravenously is ineffective. Persistent transportation of the stabilized BMP-2 through a carrier has been seen to be essential for enhancing the osteogenesis im pact of BMP-2. The current research built a new system of drug delivery by utilising cockle shell derived calcium carbonate nanoparticles (CaCO3NPs) and studied the efficacy of the delivery system on the recombinant human bone morphogenetic protein (rhBMP-2). rhBMP-2-CaCO3NPs nanoparticles were synthesised by means of a modest precipitation procedure along with mechanical grinding. Fourier-tran sform infrared spectroscopy, UV–Vis spectrophotometer, scanning electron microscope, X-ray powder diffraction, transmission electron microscope, and zeta potential were u tilised for characterising the conjugated rhBMP-2-CaCO3NPs . Cytotoxicity of rhBMP-2, CaCO3NPs and rhBMP-2-CaCO 3NPs was studied by utilising methylthiazol tetrazolium assay against fibroblast (Rat-1) cells in comparison to rhBMP-2 and CaCO3NPs. The outcomes signified bio-stability of CaCO3NPs and lower toxicity for Rat-1 cells. In summary, CaCO3NPs were prepared by a simp le precipitation process. The ensuing nanoparticles could competently entrap rhBMP-2 and generated stable rhBMP-2-CaCO3NPs. A sustained discharge of rhBMP-2 from t he CaCO3NPs was seen. CaCO3NPs loaded with r hBMP-2 demonstrated reasonable bio-compatibility. The outcomes indicated that CaCO3NPs may have significant ability as carrier of therapeutic proteins within bone tissue en gineering.